Division				
Skill	Concrete	Abstract		
Solve simple practical problems involving sharing through activities using objects and moving onto pic- tures and marks. Use language of share and equal groups.	How can you share out the pencils so that each pot contains the same?			

Skill	Concrete	Pictorial	Abstract
Sharing Introduce the division symbol emphasising its meaning to share.	10 sweets shared between 2 people. How many do they get each? Represent pictorially or with counters - eャッ $10 \div 2=5$	$6 \div 2=3$	
Grouping Use grouping to solve division problems interpreting $8 \div 2$ as how many 2 s make 8 ?	There are 8 sweets. How many people can have 2 sweets each? (use Numicon to represent or record pictorially) Record as $8 \div 2=4$ (make links to multiplication)		

Skill	Concrete	Pictorial	Abstract
Understand division as repeated addition (Use practical equipment/marked number lines/empty number lines to illustrate this).	Group physical objects together to represent the calculation.	Use marked number lines to represent the calculation. e.g. $20 \div 5$ would be interpreted as how many groups of 5 are in 20 $20 \div 5=4$	Use empty number lines to represent the calculation $16 \div 4=4$
Use number families to understand the link and relationship between x and \div. E.g. Use pictures, numbers and symbols to show how this trio of numbers are linked;	$\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$		

Skill	Concrete	Pictorial	Abstract
Begin to explore division with remainders	e.g. $42 \div 10=4$ remainder 2 modelled with Cuisenaire rods/marked and then empty number lines.	Use an empty number line to solve division problems with remainders. e.g. $22 \div 3$	

Skill	Concrete	Pictorial	Abstract
Pupil can derive and use doubles and halves of simple two-digit numbers. They understand halving as a way of 'undoing' doubling and vice versa. (c.f. Multiplication policy)	e.g. grouping objects in pairs- How many pairs? Half of 6	Drawing circles in two groups e.g. half of 14	e.g. When I doubled a number the answer was 18. Which number did I double? There are 28 children in a class. Half of them are girls, how many are boys? Write the missing number: $26 \rightarrow$ half \rightarrow [] [] \rightarrow double $\rightarrow>30$ Halve 16, 24, 42, 68

Skill	Concrete	Pictorial	Abstract
Pupil writes and calculates mathematical statements for division using the multiplication tables that they know, including for twodigit numbers times onedigit numbers, using mental and progressing to formal written methods. Pupil uses doubles of all numbers to 100 and identifies corresponding halves.	Using Dienes rods and cubes E.g. $39 \div 3$ \square		$\begin{aligned} & 6 \times 4=24 \text { so } 24 \div 4=6 \\ & 12 \times 8=96 \text { so } 96 \div 8=12 \end{aligned}$ e.g. Show me how you would work out $\begin{aligned} & 52 \div 4 \\ & 95 \div 8 \end{aligned}$

Skill	Concrete	Pictorial	Abstract
Pupil can use partitioning to halve any number, including decimals to one decimal place.			e.g. What is half: 6.4, 1274, 9.8, 6322? Half of $1000=500$ Half of $200=100$ Half of $70=35$ Half of $4=2$ so Half of $1274=637$

