

\begin{tabular}{|c|c|c|c|}
\hline Skill \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Begin to use the language 'times' and introduce the ' \(x\) ' symbol \\
Solve multiplication problems with practical equipment, pictures or arrays with support.
\end{tabular} \& \begin{tabular}{l}
Recognise that \(2+2+2+2\) can be written as \(4 \times 2\) \\
\(4 \times 10=\) \\
4 lots of 10 \\
4 groups of 10 \\
4 times 10
\end{tabular} \& \[
x^{4}=8
\]

$$
\times 2=
$$

$\times 2=$ $6 \times$ \& \\
\hline
\end{tabular}

Skill	Concrete	Pictorial	Abstract
Recognise and use x symbol. E.g. Solve multiplication problems (involving $2 x, 5 x$ and $10 x$ facts) using arrays or Numicon to support understanding. Use a range of tools and resources to solve multiplication as repeated addition e.g. 5×3 Know $3 \times$ tables	Use a marked number line or Cuisenaire rods	To understand that $2 \times 5=5 \times 2$ (Commutativity) Use an empty number line or an array to represent multiplication as repeated addition e.g. $4 \times 2,3 \times 4$	Use a marked number line to solve multiplication problems (involving $2 x$, $5 x$ and $10 x$ facts) as repeated addition e.g. 6×5

Skill Pupil recalls and uses multiplication facts for the 3,4 and 8 multiplication tables.	Concrete	Pictorial											Abstract
		Use multiplication table											Know and use the fact that $4 x$ table is double $2 x$ table Know and use the fact that $8 x$ table is double $4 x$ table e.g. Write the missing number in the empty box to make these calculations correct: e.g. $\begin{aligned} & {[] \times 3=36} \\ & 8 \times[]=24 \\ & 5 \times 8=[] \times 10 \\ & {[]=8 \times 7} \\ & {[] \times[]=24} \end{aligned}$
		\times	1	2	3	4	5	6	7	8	9	10	
Pupil understands that division is the inverse of multiplication and vice versa. (c.f. Division policy) Pupil solves problems, including missing number problems, involving multiplication		1	1	2	3	4	5	6	7	8	9	10	
		2	2	4	6	8	10	12	14	16	18	20	
		3	3	6	9	12	15	18	21	24	27	30	
		4	4	8	12	16	20	24	28	32	36	40	
		5	5	10	15	20	25	30	35	40	45	50	
		6	6	12	18	24	30	36	42	48	54	60	
		7	7	14	21	28	35	42	49	56	63	70	
		8	8	16	24	32	40	48	56	64	72	80	
		9	9	18	27	36	45	54	63	72	81	90	
		10	10	20	30	40	50	60	70	80	90	100	

Skill	Concrete	Pictorial	Abstract
			e.g.
to double any number, in-			Double 264:
cluding decimals to one			- Double $200=400$
decimal place.			- Double 60=120
			- Double $4=8$
			$\overline{528}$
			Double 6.9
			- Double 6=12
			- Double $0.9=1.8$
			- $\overline{13.8}$

